Generalized Park-Sheen Finite Elements for Adaptivity
نویسندگان
چکیده
منابع مشابه
Coupling finite elements and particles for adaptivity: an application to consistently stabilized convection-diffusion
A mixed approximation coupling finite elements and mesh-less methods is presented. It allows selective refinement of the finite element solution without remeshing cost. The distribution of particles can be arbitrary. Continuity and consistency is preserved. The behaviour of the mixed interpolation in the resolution of the convection-diffusion equation is analyzed.
متن کاملOn Hanging Node Constraints for Nonconforming Finite Elements using the Douglas-Santos-Sheen-Ye Element as an Example
On adaptively refined quadrilateral or hexahedral meshes, one usually employs constraints on degrees of freedom to deal with hanging nodes. How these constraints are constructed is relatively straightforward for conforming finite element methods: The constraints are used to ensure that the discrete solution space remains a subspace of the continuous space. On the other hand, for nonconforming m...
متن کاملQuadratic serendipity finite elements on polygons using generalized barycentric coordinates
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2012
ISSN: 1617-7061
DOI: 10.1002/pamm.201210318